Part Number Hot Search : 
2SD1856 17S100A 06SL190G 1N5347B VP2008 D6432 MB90F4 CT2566
Product Description
Full Text Search
 

To Download ACE24C0408A11 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ace24 c 04 / 08a two - wire serial eeprom ver 1. 5 1 description the ace24c0 4/ 08a provides low operation voltage of 4096/8192 bits of serial electrically erasable and progr ammable read - only memory (eeprom) organized as 512/1024 words of 8 bits each. the device is optimized for use in many industrial and com mercial applications where low - power and low - voltage operations are essential. features ? low operation voltage: vcc = 1.7 v to 5.5v ? 5v tolerant i/o ? internally organized: 512 x8 (4k), 1024x8 (8k) ? two - wire serial interface ? schmitt trigger, filtered inputs for no ise suppression ? bi - directional data transfer protocol ? 1m hz(2. 5v~5.5v ) and 400khz( 1.7 v) compatibility ? write protect pin for hardware data protection ? 16 - byte page write modes ? partial page writes are allowed ? self - timed write cycle (5 ms max) ? high - reliability - endurance: 1,000,000 write cycles - data retention: 100 years absolute maximum ratings operating temperature - 55 to +125 storage temperature - 65 to +150 voltage on any pin with respect to ground - 1.0v to +7.0v maximum operating voltage 6.25v dc output current 5.0 ma *n otice : stresses beyond those listed under absolute maximum ratings may cause permanent d am age to the device. this is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification are not implied. exposure to absolute maximum rating conditio ns for extended periods may affect device reliability .
ace24 c 04 / 08a two - wire serial eeprom ver 1. 5 2 packaging type pin configurations block diagram figure 1 pin name function a0~a2 device address inputs sda serial data input / output scl serial clock input wp write protect v cc po wer supply gnd ground
ace24 c 04 / 08a two - wire serial eeprom ver 1. 5 3 ordering information ace24c 0 4 / 08 a xx + x h pin description s erial c lock (scl) : the scl input is used to positive edge clock data into each eeprom device and negative edge clock data out of each device. s erial d ata (sda) : the sda pin is bi - directional for serial data transfer. this pin is open - drain driven and may be wire - ored with any number of other open - drain or open - collector devices. device/pa ge addresses (a2,a1) the ace24c04a uses the a2 and a1 inputs for hard wire addressing and a total of four 4k devices may be addressed on a single bus system. the a0 pin is a no connect and can be connected to ground (device addressing is discussed in deta il under the device addressing section). the ace24c08a only uses the a2 input for hardware addressing and total of two 8k devices may be addressed on a single bus system. the a0 and a1 pins are no connects and can be connected to ground (device addressing is discussed in detail under the device addressing section). w rite p rotect (wp): the ace24 c 0 4 / 08 a has a write protect pin that provides hardware data protection. the write protect pin allows normal read/write operations when connected to ground (gnd). wh en the write protect pin is conceded to vcc the write protection feature is enabled. write protect description wp pin status part of the array protected ace24c04a ace24c08a wp= v cc full (4k) array full (8k) array wp= gnd normal read / write operations pb - free u : tube t : tape and reel dp : dip - 8 fm : sop - 8 tm : tssop - 8 halogen - free
ace24 c 04 / 08a two - wire serial eeprom ver 1. 5 4 memory organization ace 24c0 4 a , 4 k serial eeprom: internally organized with 32 pages of 16 bytes each, the 4 k requires an 9 - bit data word address for random word addressing. ace 24c0 8a , 8 k serial eeprom: internally organized with 64 pages of 16 byte s each, the 8 k requires an 10 - bit data word address for random word addressing. pin capacitance applicable over recommended operating range from: t a = 25 , f = 1.0 mhz, v cc = + 1.7 v. symbol test condition max units conditions c i/o 1 input / output capacitance (sda) 8 pf v i/o = 0v c in 1 input capacitance (a 0 , a 1 , a 2 , scl) 6 pf v in = 0v note : this parameter is characterized and is not 100% tested . dc char acteristics applicable over recommended operating range from : t a = - 40 to +85 , (unless otherwise noted). symbol parameter test condition min typ max units v cc supply voltage 1.7 5.5 v i cc1 supply current v cc = 5 . 5 v, read at 400 k 0.4 1.0 ma i cc2 s upply current v cc = 5 . 5 v, write at 4 00k 2.0 3.0 ma i sb1 standby current v cc = 1.7 v, v in = v cc / v ss 3 6.0 a i sb2 standby current v cc = 5. 5 v, v in = v cc / v ss 8 18.0 a i li input leakage current v in = v cc /v ss 0.10 3.0 a i lo output leakage current v out = v cc / v ss 0.05 3.0 a v il 1 input low level - 0.6 v cc x0.3 v v ih 1 input high level v cc x0.7 5.5 v v ol 2 output low level v cc = 3.0 v, i ol = 2.1 ma 0.4 v v ol 1 output low level v cc = 1.7 v, i ol = 0.15 ma 0. 2 v note : 1 . v il min and v ih max are reference only and are not tested.
ace24 c 04 / 08a two - wire serial eeprom ver 1. 5 5 ac characteristics applicable over recommended operating range from : t a = - 40 to +85 , v cc = + 1.7 v to +5.5v, cl = 1 ttl gate and 100 pf (unless otherwise noted). test conditions are listed in note 2. symbol p arameter 1.7 - volt 2.5 - volt 5.5 - volt units min max min max min max f scl clock frequency, scl 400 1000 1000 khz t low clock pulse width low 1.3 0.4 0.4 s t high clock pulse width high 0.6 0.4 0.4 s t aa clock low to data out valid 0.1 0.9 0.0 5 0.55 0.05 0.55 s t buf 1 time the bus must be free before a new transmission can start 1.2 0.5 0.5 s t hd.sta start hold time 0.6 0.25 0.25 s t su.sta start setup time 0.6 0.25 0.25 s t hd.dat data in hold time 0 0 0 s t su.dat data in se tup time 100 100 100 ns t r inputs rise time 0.3 0.3 0.3 s t f inputs fall time 300 100 100 ns t su.sto stop setup time 0.6 0.25 0.25 s t dh data out hold time 50 50 50 ns t wr write cycle time 5 5 5 ms endurance (1) 3.6 v, 25 , page mod e 1,000,000 write cycles notes:1. this parameter is characterized and not 100% tested. 2.ac measurement conditions: rl (connects to vcc): 1.3k (2.5v, 5.5v), 10k (1.7v) input pulse voltages: 0.3 vcc to 0.7 vcc input rise and fall times: Q 50 ns input and output timing reference voltages: 0.5vcc
ace24 c 04 / 08a two - wire serial eeprom ver 1. 5 6 device operation c lock and d ata t ransitions : the sda pin is nor mally pulled high with an external device. data on the sda pin may change only during scl low time per iods (refer to figure 4 ). data changes during scl high periods will indicate a start or stop condition as defined below. s tart c ondition : a high - to - low transition of sda with scl high is a start condition which must precede any other command (refer to fig ure 5 ). s top c ondition : a low - to - high transition of sda with scl high is a stop condition. after a read sequence, the stop command will place the eeprom in a standby power mode (refer to figure 5 ). acknowledge : all addresses and data words are serially t ransmitted to and from the eeprom in 8 - bit words. the eeprom sends a zero during the ninth clock cycle to acknowledge that it has received each word. the happens during the ninth clock cycle. following receipt each word from the eeprom, the microcontroller should send a zero to eeprom and continue to output the next data word or send a stop condition to finish the read cycle. s tandby m ode : the ace 24c 0 4 / 08 a features a low - power standby mode which is enabled: (a) upon power - up and (b) after the receipt of t he stop bit and the completion of any internal operations. device reset : after an interruption in protocol power loss or system reset, any two - wire part can be protocol reset by following these steps: 1. clock up to 9 cycles. 2. look for sda high in each cycle while scl is high and then. 3. create a start condition as sda is high bus timing figure 2 scl: serial clock , sda: serial data i/o
ace24 c 04 / 08a two - wire serial eeprom ver 1. 5 7 write cycle timing figure 3 scl: serial clock, sda: serial data i/o note: the write cycle time t wr is the time from a valid stop condition of a write sequence to the end of the internal clear/wri te cycle. figure 4 data validity figure 5 start and stop definition
ace24 c 04 / 08a two - wire serial eeprom ver 1. 5 8 figure 6 output acknowledge device addressing the 4 / 8 k eeprom devices all require an 8 - bit device address word following a start con dition to en able the chip for a read or write operation (refer to figure 7 ). the device address word consists of a mandatory one, zero sequence for the first four most significant bits as shown. this is common to all the eeprom devices. the 4k eeprom only uses the a2 and a1 device address bits with the third bit being a memory page address bit. the two device address bits must compare to their corresponding hard - wired input pins. the a0 pin is no connect. the 8k eeprom only uses the a2 device address bit with the next 2 bits being for memory page addressing. the a2 must compare to its corresponding hard - wired input pin. the a1 and a 0 pins are no connect. the module package device address word also consist of a mandatory one, zero sequence for the first four most signif icant bits. the next 3 bits are all zero. the eighth bit of the device address is the read/write operation select bit. a read operation is initiated if this bit is high and a write operation is initiated if this bit is low. upon a compare of the device add ress, the eeprom will output a zero. if a compare is not made, the chip will return to a standby state. write operations b yte w rite a write operation requires an 8 - bit data word address following the device address word and acknowledgment. upon receipt of this address, the eeprom will again respond with a zero and then clock in the first 8 - bit data word. following receipt of the 8 - bit data word, the eeprom will output a zero and the addressing device, such as a microcontroller, must terminate the write seq uence with a stop condition. at this time the eeprom enters an internally timed write cycle, t wr, to the nonvolatile memory. all inputs are disabled during this write cycle and the eeprom will not respond until the write is complete (refer to figure 8 ).
ace24 c 04 / 08a two - wire serial eeprom ver 1. 5 9 p age w rite the 4/8 k devices are capable of 16 - byte page writes. a page write is initiated the same as a byte write, but the microcontroller does not send a stop condition after the first data word is clocked in. instead, after the eeprom acknowledges re ceipt of the first data word, the microcon troller can transmit up to seven more data words. the eeprom will respond with a zero after each data word received. the microcontroller must terminate the page write sequence with a stop condi tion (refer to figure 9 ). the data word address lower three bits are internally incremented following the receipt of each data word. the higher data word address bits are not incremented, retaining the memory page row location. when the word address, internally generated, reac hes the page boundary, the following byte is placed at the beginning of the same page. if more than eight data words are transmitted to the eeprom, the data word address will roll over and previ ous data will be overwritten. a cknowledge p olling once the internally timed write cycle has start ed and the eeprom inputs are dis abled, acknowledge polling can be initiated. this involves sending a start condition followed by the device address word. the read/write bit is representative of the operation desired. o nly if the internal write cycle has completed will the eeprom respond with a zero allowing the read or write sequence to continue. read operations read operations are initiated the same way as write operations with the exception that the read/write select bit in the device address word is set to one. there are three read operations: current address read, random address read and sequential read. c urrent a ddress r ead the internal data word address counter maintains the last address accessed dur ing the last r ead or write operation, incremented by one. this address stays valid between operations as long as the chip power is maintained. the address roll over during read is from the last byte of the last memory page to the first byte of the first page. the addr ess roll over during write is from the last byte of the current page to the first byte of the same page. once the device address with the read/write select bit set to one is clocked in and acknowledged by the eeprom, the current address data word is seri ally clocked out. the microcontroller does not respond with an input zero but does generate a following stop condition (refer to figure 10 ). r andom r ead a random read requires a dummy byte write sequence to load in the data word address. once the device address word and data word address are clocked in and acknowledged by the eeprom, the microcontroller must generate another start condition. the microcontroller now initiates a current address read by sending a device address with the read/write select bit high. the eeprom acknowledges the device address and serially clocks out the data word. the microcontroller does not respond with a zero but does generate a following stop condition (refer to figure 11 ).
ace24 c 04 / 08a two - wire serial eeprom ver 1. 5 10 msb lsb 1 0 1 0 a 2 a 1 p 0 r/w msb lsb 1 0 1 0 a 2 p 1 p 0 r/w s equential r ead sequential reads are initiate d by either a current address read or a random address read. after the microcontroller receives a data word, it responds with an acknowledge. as long as the eeprom receives an acknowledge, it will continue to increment the data word address and serially clock out sequential data words. when the memory address limit is reached, the data word address will roll over and the sequential read will continue. the sequential read operation is terminated when the microcontroller does not resp ond with a zero but does generate a following stop condition (refer to figure 12 ). 4k 8k figure 7 device address figure 8 byte write figure 9 page write
ace24 c 04 / 08a two - wire serial eeprom ver 1. 5 11 figure 10 current address read figure 11 random read figure 12 sequential read
ace24 c 04 / 08a two - wire serial eeprom ver 1. 5 12 packaging information dip - 8
ace24 c 04 / 08a two - wire serial eeprom ver 1. 5 13 packaging information sop - 8
ace24 c 04 / 08a two - wire serial eeprom ver 1. 5 14 packaging information tssop - 8
ace24 c 04 / 08a two - wire serial eeprom ver 1. 5 15 notes ace does not assume any responsibility for use as critical components in life support devices or systems without the express wri tten approval of the president and general counsel of ace electronics co., ltd. as sued herein: 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes fai lure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. 2. a critical component is any component of a life support device or system whose fa ilure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ace technology co., ltd. http://www.ace - ele.com/


▲Up To Search▲   

 
Price & Availability of ACE24C0408A11

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X